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A numerical investigation of the capdlary instability and disintegration of infinite hquid Jets 
of a circular cross section IS carried out All the nonlinear and viscous terms are included. A 
vorticity-stream function formulation is used in conjunctlon with a new computer-generated 
numerical algorithm to ensure the reqtuslte accuracy and to facilitate the treatment of the free 
surface boundary. Successive surface profiles are compute. These results show that the 
nonhnear terms are responsible for the nonuniformity of the sizes of drops produced m 
jet disintegration In the case of a jet of water, satellites are obtained for all the unstable 
disturbances treated. The sizes of these satellites are found to Increase with the disturbance 
wavelength. The computed drop sizes for a jet of water are generally in good agreement with 
the experimental observations of previous investigators. 0 1987 Academic Press. Inc 

1. INTRODUCTION 

The problem of disintegration of jets was first investigated experimentally by 
Savart [l] in 1833. Subsequent to Savart’s work, Plateau [2], calculating the 
potential energy of the disturbed configuration, showed that a cylindrical column of 
inviscid liquid in vacuua is stable for all purely nonaxisymmetric disturbances, but 
is stable or unstable for axisymmetric disturbances according to whether their 
wavelengths are less or greater than the circumference of the undisturbed column. 

Rayleigh [3] included the kinetic energy of the associated motion of the 
disturbed configuration and arrived at an equation for the growth rate of a 
symmetrical disturbance. Specifically, he found that a disturbance having a 
wavelength 4.51 times the diameter of the jet grows more rapidly than any other, 
and eventually breaks up the jet into droplets. 

In a second analysis, Rayleigh [4] included the effects of viscosity. This analysis 
resulted in a complicated dispersion relation which was not conducive to solution. 
Assuming the viscous effects to be very large compared with inertia effects, he 
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showed that the maximum instability occurs when the wavelength of the distur- 
bance is very large compared with the diameter of the undisturbed jet, i.e., when the 
wavelength is theoretically infinite. 

It was Bassett [S], and later Weber [6], who obtained a quantitative description 
of the instability of a viscous jet. They found that viscosity does not alter the 
stability criterion predicted by Plateau, but that viscous effects increase the 
wavelength of the most rapidly growing disturbance. 

Since the hydrodynamical equations are nonlinear, a linear theory can be 
expected to break down. In the first place, it conserves mass only to first order. 
Second, a linear theory does not exlain the nonsinusoidal surface shapes observed 
in experiment. Furthermore, the experimental studies of Donally and Glaberson 
[7] show that large main drops are interspaced with smaller drops (satellites) 
which are not accounted for by the linear theory. These observations mean that 2 

higher order theory is imperative to a better understanding of the disintegration 
pheonmenon. 

Yuen [S], using the method of strained coordinates, developed a third-order 
theory and calculated the higher order terms of the surface deformation. Thus. for 
an inviscid jet, he shows the nonsinusoidal development of an initially sinusoidal 
wave. His analysis also shows that for short wavelengths the rate at which the neck 
contracts is greater than the rate at which the swell grows, whereas for long 
wavelengths, the contrary is true. However, he found that the maximum growth 
rate occurs at the wavelength given by Rayleigh’s linear theory. Other theoretical 
investigations on the nonlinear instability of inviscid jets were performed by Nayfeh 
[S] and Wang [lo], and more recently by Lafrance [I l]. Lafrance’s approach 
closely resembles that of Yuen. His nonlinear analysis predicts the appearance of 
satellites, and his results are in good agreement with the experimental data of 
Rutland and Jameson Cl?]. 

Yuen also performed experiments which strongly supported his own theory. 
According to both Lafrance’s analysis and experiments, satellites cease at dimen- 
sionless wavenumbers less than 0.8. However, Rutland and Jameson observed that 
satellites are always formed, albeit they are very small at large wavenumbers. The 
experiments of Goedde and Yuen [13] confirm this latter viewpoint. 

Even though the problem of disintegration of liquid jets has been subjected to 
many analytical treatments, there has still been a need for a comprehensive study of 
the phenomenon. Theories to date have either dealt with a linearized form of the 
problem, or have been based on the assumption of an inviscid jet. In this paper, we 
present a numerical solution to the problem, including both nonlinear and viscous 
terms. Our numerical approach, in addition to being of a more general nature, 
provides more flexibility in dealing with the problem. Mere a vorticity stream 
function formulation is employed to solve the Navier-Stokes equations numerreally. 
A newly developed algorithm is used to provide accuracy and to falitate treatment 
of the free-surface boundaries. Sizes of main and satellite drops are computed over a 
range of disturbance wavelengths. 
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2. THE JET MODEL AND GOVERNING EQUATIONS 

We consider a jet emerging from a nozzle of radius, a (see the Appendix). 
Immediately after emergence, stress relaxation occurs at the outer surface, and the 
velocity profile tends to uniformity. If the maximum rate of growth of any distur- 
bance is such that the jet can travel a substantial number of diameters downstream 
before any breakup occurs, then the jet can be treated as uniform and infinite for 
the purpose of a stability analysis. All of the cited prior analyses involve the 
assumption that these conditions are satisfied, and the assumption is retained here 
as well. In addition, friction with the jet surroundings is neglected, on the 
presumption that the surrounding medium is a low-density, low-viscosity gas. Only 
axisymmetric disturbances are treated, principally for expediency, but justified par- 
tially by some theoretical argument that these disturbances are the most unstable 
[Z]. Cylindrical coordinates are used for our analysis, with %” along the jet axis. 

The radial and axial components of the equation of motion for an incompressible 
fluid of viscosity with axisymmetric motion about axis I are 

where 

DW 1 ?P -= ----+)I 
Dt p dz 

(1) 

(2) 

(3) 

and u and IV are the radial and axial components of velocity, respectively, p is the 
pressure, and v = p/p is the kinematic viscosity. 

The equation of mass continuity is 

which is satisfied by letting 

1 a* 1 w u=---’ 
r i3z’ 

w = - - - 9 
r i?r 

(5) 

$, being the Stokes’ stream function. 
Eliminating p between Eqs. (1) and (2), one obtains the so-called “vorticity 

transport equation”: 

Do uw ---= 
Dt I 

,IV$ij - 7, 
r 

(6) 
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where CO is the component of vorticity normal to the Y--P plane and is given by 

Furthermore, OJ is related to $ by the following relation 

i=Q = D&b, 

where the differential operator D is defined as 

3. BOUNDARY CONDITIONS 

3.1. Surface Cor~ditioi~s 

In order to simplify the formulation of the surfac’e conditions, a coordinate 
system locally tangent to the free surface is chosen (Fig. 1). The surface conditions 
may be expressed as follows: 

ia J Vanishing of the shear stress at the surface yields: 

($--g) sinl2x)+(~+~~cost2a)=O. 
, 

(b) The difference in the normal stress between the inside and outside of the 
jet is due to the interfacial surface tension. This condition is formulated as 

where pu is the ambient pressure and r, is the disturbed radius of the jet. 

5 
I 
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(c) Every point on the surface of the jet must always adhere to the surface 
and not flow through it. This kinematical condition can be mathematically 
expressed as 

ar & -F=us-uls -2 
at az (12) 

where u, and )v, are the radial and axial velocities, respectively, at the surface of the 
jet. 

3.2. Centerline Conditions 

At the centerline of the jet, one may specify 

$=O at r=O. (13) 

For the axial velocity to be finite at r=O, the following restriction must hold 

3 -0 z- at r=O. (14) 

Furthermore, because of symmetry of the axial velocity with respect to the 
centerline, Eq. (7) yields 

0 = 0 at r =O. (15) 

4. NUMERICAL SOLUTION PROCEDURE 

4.1. Transformation qf Coordinates 

We replace the variable “r” by 11 as independent variable. Thus: 

ye = r/rJ-;, t) (16) 

During the process of computation, this transformation enables one to accomplish: 

(a) Retention of an adequate number of grid points as the jet contracts. 

(b) Maintenance of high precision on the boundary by having a point exactly 
on the surface. 

(c) Uniformity of grid size in the transformed coordinates (yl, z). 

However, these desirable characteristics are achieved at the expense of complicating 
the differential equations, and proliferating the derivative terms in the boundary 
conditions. 

4.2. Order of Calculations 

Suppose that at time t all the physical variables of the flow are known. Then the 
kinematic condition (12) is used to determine the new shape of the jet. Using new 
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values of I’, and current values of u and ii*: one solves Eq. (6) with appropriate 
boundary conditions to compute the vorticity in the jet interior. Next, using the 
new values of rs and current values of II and W, one solves Eq. (7) with pertinent 
boundary conditions for $. Finally, u and w everywhere, and o at the surface are 
computed. The computation cycle is repeated. 

4.3. Numericai Solution of the Vorticity Transport Equation 

The numerical solution of the vorticity transport equation is obtained by the 
application of the well-known alternating-direction implicit method (ADI). This 
method was developed by Peaceman and Rachford (14) and by Douglas (15) for 
multidimensional heat flow and diffusion. In a Cartesian coordinate system, for one 
half time step, it treats values of the dependent variable along successive lines of 
constant x, as unknowns, with all other values known. Thus along any given s,. the 
unknowns form a tridiagonal matrix which is readily solved. During the following 
half time step, a similar procedure is used in the y direction. So used, the method is 
unconditionally stable: with a truncation error of 

The remapping of coordinates used in the present paper causes cross derivatives to 
appear in the differential equation. It will be observed that the AD1 method alcc,ays 
evaluates such cross-derivative finite-difference term explicitljl. Some degradation in 
the timewise truncation error-can be expected. 

4.4. Numerical Solution of $-CO Relation 

In order to obtain an accurate numerical solution to Eq. (S), a newly deveioped 
algorithm is used. This algorithm consists of a constraint between functionai values 
at the nine pivotal points of the grid shown in Fig. 2. To obtain this algorithm, $ is 
expanded into a polynomial of 17 terms about the grid center as 

Ii/ = a,, + aloq + azorj2 + a,,q3 + a,,$ + aO,z + ao2z2 

+ ao3z3 + ao4z4 +a,,q~+a12~-72+,,,ll’=+a,z)12,2 

+ a,,rjz” + a,, q3z + a,,(q3z f qz3) + aJz(gJ2 + q’z”) (171 

where 1~ and z here are measured from the grid center. Evaluation of this 
polynomial at each of the 9 points gives rise to 9 linear equations, Further, sub- 

FIGURE 2 
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stitution of this polynomial into the I,-w relation (8) with subsequent satisfaction 
at the 9 points produces 9 more equations. Thus one arrives at a system of 18 linear 
equations in 17 unknowns 11,. For compatibility, there must be a constraint 
between values of $ and cc) at the pivotal points of the grid. This relation can be 
written as 

(18) 

where “C’ designates the grid point, B, are the metric coefficients. and 

Obtaining similar relations for other grids, one arrives at the following system of 
linear equations 

[I?]{$} = (G). (19) 

The elements of the two-dimensional matrix B and the vector G consist of the 
respective values of p and fiQ throughout the computation field. 

Although highly accurate, the foregoing numerical technique is relatively 
uneconomical in time and so is used in regions where accuracy is more difficult to 
achieve, that is, along lines i = 2 (see next section), i = 3, and along line i = N - 1 
(see Section 4.6) (Fig. 3). 

In order to save computation time, an alternative high-accuracy scheme, as 
shown in Fig. 4, was used elsewhere in the computation field. Let L,,($) denote the 
5 x 5 difference operator corresponding to the differential operator in Eq. (8). Let 
L,($) denote the same for a 3 x 3 central difference scheme. Then one may write: 

&($I - LA$) +- Lx($) = Q (20) 

The difference L,, - L, is small, and can be treated explicitly. Thus 

FIGURE 3 
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FIGURE 4 

This argument gives essentially the higher order accuracy with the lower-order 
formula. 

The system of linear equations thus obtained is linked to the system (19) and the 
resulting total system is subsequently solved by ADI. As previously noted. PLDI 
evaluates all cross derivatives explicitly. 

4.4. Numerical Treatment of the Suyface Conditiom 

Equations (10) and (11) constitute the boundary conditions at the surface of ihe 
jet. Upon eliminating p from Eqs. (2) and ( 1 I ), one arrives at a rather complicated 
equation which, in conjunction with Eq. (IO) (expressed in (11, z) coordinates)> is 
used as the surface condition throughout the computation. Transient ierms 
introduced in Eq. ( 11) as a result of the elimination of p are treated implicitly. 

Let us again consider the 9-point grid shown in Fig. 2. In order to obtain the 
algorithm corresponding to surface conditions (11) and (12 1, we use the following 
procedure. The polynomial (17) is substituted into the surface conditions, which are 
imposed at points 1. 4. and 7, thus producing six equations. Twelve other equations 
are obtained in the manner descrived in Section (4.3). Thus one arrives at the sur- 
face algorithm, which is a constraint between the I/J’s and W’S a~ points 2, 3, 5. 6. 8, 
and 9. 

4.5. Tile Center-he Algorithm 

The streamfunction at the centerline is subjected to the conditions 

*=o slj 
and -=0 

c’s 
at r=O. 

Furthermore. the algorithm must be such that it can withstand the variation of l/t 
in Eq. (8). In our experience, the polynomial (17 j tolerated this variation near the 
centerline very well, and an algorithm was obtained in the same manner as in 
Section 4.3, except that at points 3, 6, and 9 (which are located on the centerline). 
the conditions imposed are $ = 0 and 8$/6~ = 0. 
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4.6. Surface Velocity, Surface Vorticity, and Contour Calculations 

At every point along the line i = 2 of Fig. 3, $ is expanded into a polynomial 
about the center of the grid. This polynomial is represented by (17) and can be 
written in matrix notation as 

*k = fal{flk7 (22) 

where (a> and (F}k are 17-component vectors, one consisting of the unknown 
coefftcients and the other of the known terms of the polynomial. The subscripts 
k = 1, 2,..., 9 designate the positions on the grid. 

The simultaneous evaluation of the polynomial, Eq. (8) and the surface con- 
ditions at the nine grid points, results in a set of 18 linear equations in 17 
unknowns. This system can be represented by 

Ccl(a) = (61, (23) 

where [c] is an 18 x 17 coefficient matrix and {b} is an 18 x 1 column matrix con- 
stituting 18 known quantities. Elimination of any of these equations, say the 14th, 
from this system enables one to solve for (a). Once {a} is computed, any 
derivative of II, can be expressed as 

o,ll’Ik = {a>ID,Flk, 

where i and j denote the order of the differentiation with 
tively. For example, 

DIO$15= (a>(~d}j 

means 

(24) 

respect to v] and z, respec- 

where the subscript 5 corresponds to the position on the grid. 
The velocity components along the surface and along the line i = 2 are computed 

using the aforementioned procedure. However, in the interior, the velocity com- 
ponents are obtained using the usual three-point central difference formula. Near 
the centerline, where q + 0 (Fig. .5), these formulas are not applicable. The con- 

0 r]=A?j 
I 1 rj=o 

CENTERLINE 

FIGURE 5 
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dition 8$/&l = 0 at the centerline must be realized by any formulation that yields 
the velocity distribution in that vicinity. Furthermore, the radial symmetry of w 
must be incorporated. These considerations call for the expansion formula for $ 
near the centerline, 

where 

and 

The value of the vorticity at the surface is also obtained by computing the coef- 
ficients of the polynomial (17) and substituting the polynomial into Eq. (8). 

The new contour of the jet is determined by the kinematic condition (12), which 
can be written as 

; (Q2 = 2(a}(D,,F),. 

An explicit treatment of the time derivative gives 

where n is the time index. 

4.7. Nimer~al Dl~ferentiation of f , 

It can be seen that the spatial derivatives of r3 occur frequently in the coefficients 
of the governing equations and surface conditions. In order to obtain these quan- 
tities, one has to differentiate numerically the updated values of I’, computed via 
Eq. (25). Cubic splines, which exclude none of the data, are used for this purpose. 
This procedure generates a function which is continuous, together with its first two 
derivatives, at every point. Spline functions are discussed in Ref. (16). 

4.8. Inflows-Outflow Conditions 

It is easy to show that the nonlinear governing equations must preserve the nodal 
symmetry of any disturbance which is initially sinusoidal. Thus in the numerical 
calculations the wavelength of the disturbance is held constant by prescribing 
periodicity at the right and left ends of the computation field. In other words, the 
wavelength of an initial disturbance is kept fixed throughout the computation, as 
one observes the growth or oscillation, as the case may be. of that particular 
disturbance. For the infinitely long jet, this treatment substitutes for inflowilutflow 
conditions. 
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4.9. Initial Conditions 

The jet is assumed to be moving with a uniform over its cross section and to be 
displaced from equilibrium by an infinitesimal disturbance. The perturbation quan- 
tities are taken to be those of Rayleigh’s linearized solution for an inviscid jet at 
t = 0. The new geometry of the jet is determined with the use of the value of rS from 
Rayleigh’s solution at t = dr. All flow configurations thereafter are computed 
numerically. 

5. RESULTS 

5.1. Drop Sizes 

Figures 6 through 13 demonstrate the effects of the wavelength of an axially sym- 
metric disturbance upon the stability of a jet of water. Figures 6 and 7 show that 
disturbances having wavelengths less than D are stable and propagate as waves. 
Furthermore, as one might expect, the propagation speed decreases with increasing 
wavelength, and disturbances having shorter wavelengths dampen faster than those 
with longer wavelengths. Ar the cutoff wavelength for small-disturbance inviscid 
theory, ,I= ~0, Fig. 8 shows that disturbances experience some growth. 
Nevertheless, the growth rate is small, and this fact is demonstrated in Fig. 9, where 
the contour is plotted at T= 20. The Basset--Weber theory predicts that viscosity 
does not affect the stability criterion of Plateau. Thus one may conclude that the 

0.0 z 

FIG. 6. Propagation of a disturbance of stable mode: intimte Jet nonhnear solution. diameter of 
the undisturbed jet D = 0.0035 cm, wavelength of the disturbance = 1.00 D, Initial amplitude of the 
disturbance = 0.01 D, viscosity of the liquid = 0.01 g/(cm*s), surface tension of the hquid = 72.5 erg/cm’. 
density of the hquid = 1.00 g/(cm**3), T= 2.00. 
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Fro. 7. Proagation of a disturbance of stable mode: infinite jet nonlinear solution: diameter of 
the undisturbed jet D=0.0035 cm, wavelength of the disturbance= 2.80 D, initial amplitude of the 
disturbance = 0.01 D, viscosity of the liquid = 0.01 g/(cm*s), surface tension of the liquid = 72.5 erg/cm2, 
density of the liquid = 1.00 g/(cm**3), T= 4.00. 

FIG. 8. Growth of a disturbance having the invisced theory’s cutoff wavelength: infinite jet nonlinear 
solution: diameter of the undisturbed jet D = 0.0035 cm, wavelength of the disturbance = 3.14 D, initial 
amplitude of the disturbance=O.Ol D, viscosity of the liquid =O.Ol g/(cm*s), surface tension of the 
liquid = 72.5 erg/cm2, density of the liquid = 1.00 g/(cm**3), T= 20.00. 
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1.0 

00 I -2 

1.01 

FIG. 9. Jet profile for a disturbance hawng the invIscid theory’s cutoff wavelength: Infinite jet non- 
linear solution: chameter of the undisturbed jet D = 0.0035 cm, wavelength of the disturbance = 3.14 D, 
initial amplitude of the disturbance=O.Ol D, viscosity of the liquid=O.Ol g;(cm*s). surface tension of 
the liquid = 72.5 erg/cm’, density of the liquid = 1.00 gi(cm**3 ), T= 20.00. 

FIG. 10. Infinite jet nonlinear solution: diameter of the undisturbed jet D = 0.0035 cm, wavelength of 
the disturbance = 3.30 D, imtlal amplitude of the disturbance =O.Ol D, viscosity of the liquid = 
0.01 g/(cm*s), surface tension of the liquid = 72.5 erg/cm’, density of the liqmd = 1.00 g/(cm**3), 
T= 17.15. 
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FIG. 11 Infink Jet nonhnear solution: diameter of the undisturbed Jet LI = 0.0035 cm. wavelength of 
the dtsturbance = 3 500 D. mittal amphtude of the dtsturbance = 0.01 D, wcos~ty of the liquid = 
0.01 g,(cm*s). surface tenston of the liquid = 72.5 erg,‘cm’. density of the liquid = 1.00 g:‘(cm”*3 t. 
?-=13.1-t. 

o, o C.-------L 7 

10 

FIG. It. Infiniie Jet nonlinear solutton: diameter of the undisturbed jet D = 0 0035 cm. aavelength 
of the disturbance =3.508 D. initial amphtude of the disturbance=001 D, dtscostty of the 
liqmd =O.Of g, (cm*s). surface tension of the liquid = 72.5 erg cm, densttg of the liquid = I.GO g!(cm**:). 
I-= 1096 
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FIG. 13. Infinite jet nonhnear solution: diameter of the undisturbed Jet D = 0.0035 cm, wavelength of 
the disturbance=9.00 D, initial amplitude of the disturbance =O.Ol D, viscosity of the liquid = 
0.01 g/(cm*s), surface tension of the liqmd = 72.5 erg/cm’. density of the liquid = 100 g/(cm**3), 
T= 16.39. 

decrease in the threshold of stability is a nonlinear effect, as asserted by Yuen and 
Nayfeh. Figures 10 through 13 show the instability, and eventual breakup, of a jet 
of water into main and satellite drops when the initial disturbance has a wavelength 
greater than nD. One may observe that, for shorter wavelengths, the neck contracts 
faster than the swell grows. For longer wavelengths, the contrary becomes true. 
According to Rayleigh’s inviscid linear theory and Yuen’s nonlinear inviscid 
analysis, a disturbance having a wavelength of 4.5080 grows fastest. Our numerical 
results show that, due to viscous effects, the wavelength of the fastest growing 
disturbance should be just slightly larger than this value. 

Drop radii are plotted in Fig. 14. These computed results show that the size of 
the satellites increases with the wavelength of the initial disturbance. Drop radii 
were calculated from drop volumes at incipient breakup. A comparison between 
theory and previous experimental measurements is presented in Fig. 15. According 
to Lafrance’s theory, satellites cease to be present for nondimensional wavenumbers 
greater than 0.8 (/? < 3.930). However, our computed results predict satellites in 
that range. 

5.2. Tests f;v Accuracy 

As is customary in such numerical work, it is necessary to demonstrate that the 
results obtained are insensitive to increment size. In Ref. [17], it is shown that, 
typically, a twofold variation in d- 7 and a tenfold variation in At make no 
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significant difference. However, to preserve such insensitivity to the time incremenr 
near jet breakup, it was necessary to reduce further tlhe increment magnitude. A 
typical value for AZ was about 0.4 and, for At, about 0.1. 

The adequacy of the choice of Aq = 0.1, which was used uniformly m ail 
calculations, is justified by the results in Fig. 16. Mere the transient velocities 
resulting from sudden stress relaxation at the surface of a Poiseuille how are com- 
pared with the exact series solution obtained from Ref. [Is>. This is a severe test, 
and the agreement is excellent. 
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FIG 14. Drop radius variation with wavenumber for the breakup of a Jet of water as predicted by 
the present numerical solution: 13. main drop; 0, satellite drop. 



340 SHOKOOHI AND ELROD 

4 

2 

R2 

1 

I- 

I 
i 
I 
I 

k 
FIG. 15. Comparison of the drop sizes obtained from the present numerical solution for a Jet of 

water wtth the previous theoretical predictions and expertmental measurements. Theory: Lafrance, 
-- , main drop; ---, satellite drop; numerrcal, A, mam drop; _, satellite drop. Experiment: 
Rutland and Jameson, n , main drop; 0, satellite drop; Lafrance. Ii, mam drop; 0, satelhte drop. 

' 0 lo 20 30 40 50 60 70 80 90 100 

w 

FIG. 16 Comparrson of the axral elocrty profile of an infinite jet with zero initial disturbance agamst 
the temperature profile m an Infinite pipe with zero heat flux at the wall. The inmal velocity and tem- 
perature distributions are given by lOO(1 - t$). Dtameter of the undrsturbed jet = D = 0.0035 cm; 
vrscosity of the liquid=O.Ol g/(cm*s); surface tension of the liquid= 1.00 erg,‘cm’; density of the 
liquid = 1.00 gi(cm**3 J. 



DISINTEGRATION OF LIQUID JETS 34i 

Both accuracy and numerical stability were established by additional tests. Zero- 
viscosity numerical results agree in the linear range very well with Rayleigh’s 
solution for both stable and unstable modes, and for the threshold wavelength In 
Figs. 8 and 9, there is no evidence of numerical instability for computations involv- 
ing 200 time steps on a slightly disturbed viscous jet with a disturbance wavelength 
at the inviscid linear threshold. Indeed, for all computations performed with the 
chosen increments of ‘7. z, and t, there were no indications of numerical instability. 

APPENDIX: NOMENCLATURE 

Undisturbed jet radius 
Undisturbed jet diameter 
Index in I’ direction 
Index in z direction 
Dimensionless wavenumber 
Number of divisions in r direction 
Iteration index, time index 
Number of subdivisions in 2 direction 
Pressure 
Ambient pressure 
Radial position 
Jet radius 
Dimensionless drop radius 
Mutually orthogonal principal radii of curvature 
Time 
Total time 
Radial component of velocity 
Axial component of velocity 
Axial position coordinate 
Angle between local tangent to jet surface and the ; axis 
Increment in I’ direction 
Increment in -7 direction 
Surface deformation = Y=-~, 
r/r, 
Wavelength of disturbance 
Viscosity 
Kinematic viscosity 
Density 
Surface tension 
Stokes’ stream function 
Component of vorticity normal to Y-Z plane 
rw 
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